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We introduce a quantization scheme that can be applied to surface waves propagating along a plane inter-
face. An important result is the derivation of the energy of the surface wave for dispersive nonlossy media
without invoking any specific model for the dielectric constant. Working in Coulomb’s gauge, we use a modal
representation of the fields. Each mode can be associated with a quantum harmonic oscillator. We have applied
the formalism to derive quantum mechanically the spontaneous emission rate of surface plasmon by a two-
level system. The result is in very good agreement with Green’s tensor approach in the nonlossy case. Green’s
approach allows also to account for losses, so that the limitations of a quantum approach of surface plasmons
are clearly defined. Finally, the issue of stimulated versus spontaneous emission has been addressed. Because
of the increasing density of states near the asymptote of the dispersion relation, it is quantitatively shown that
the stimulated emission probability is too small to obtain gain in this frequency region.
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I. INTRODUCTION

Quantum theory of light is a useful tool to describe mi-
croscopic interactions between light and matter. The electro-
magnetic state is represented by photon number states and
the electromagnetic field becomes an operator.1 Such a de-
scription of light provides a quantitative description of ab-
sorption, spontaneous and stimulated emission of photons by
a two-level system. In particular, it allows to derive a quan-
titative treatment of light amplification. It also predicts pure
quantum effects, such as photon coalescence or antibunch-
ing. Quantum theory of light can be extended to nondisper-
sive and nonlossy media. Each photon in the material corre-
sponds to the excitation of a mode characterized by a wave
vector k and circular frequency �, such as k=n� /c, where n
is the refractive index of the medium and c the light velocity
in a vacuum. It is the purpose of this paper to introduce a
quantification scheme for surface waves propagating along
an interface.

It is well known that electromagnetic surface waves called
surface plasmons exist at interfaces between metals and
dielectrics.2 Their quantum nature has been demonstrated by
energy-loss spectroscopy experiments on thin metallic films
reported by Powell and Swan.3 Single optical plasmons have
been excited recently along a metallic nanowire4,5 Surface
plasmons are associated with collective oscillation of free
electrons in the metal at the surface. Similar electromagnetic
fields exist also on polar materials and are called surface
phonon polariton. Both surface-plasmon-polaritons and
surface-phonon-polaritons propagate along the interface and
decrease in the direction perpendicular to the surface. Such a
resonance is therefore called surface wave in a more general
way. Most studies deal with a plane interface between air or
vacuum and a nonlossy material. In this case, it is well
known2 that a surface wave can exist if the dielectric con-
stant ���� has a real part lower than −1.

Losses are often a serious limitation for many practical
applications envisioned for surface plasmons. This problem

could be circumvented by introducing gain in the system.
Studies have been made in such a way with metallic nano-
particles embedded in a gain medium both numerically with
dye molecules6 or quantum dots7,8 and experimentally.9

Seidel et al.10 reported the first experiment demonstrating the
amplification of surface plasmons on a flat silver film sur-
rounded by a solution of dye molecules. Since then, a few
studies have dealt with stimulated emission of surface plas-
mons on flat interfaces both experimentally11,12 and
theoretically.13 Such works have paved the way to active
plasmonics14–16 and nanolasers17,18 or more precisely to
spasers,8,19 or surface-plasmon amplification by stimulated
emission introduced by Bergman and Stockman and demon-
strated experimentally recently.20,21

It is clear that a quantum treatment of surface plasmon
could be useful for many applications. For instance, an effi-
cient single-photon emitter could be optimized.22 A quantum
treatment allows to model stimulated emission and therefore
to specify gain conditions and laser operation. It could also
allow to analyze pure quantum effects for surface plasmons
such as single-plasmon interferences, quantum
correlations,23 bunching, strong-coupling regime24,25 or
single-photon excitation of surface plasmon.26–29 The first
quantization scheme for surface plasmon on a metallic sur-
face has been reported by Elson and Ritchie.30 In their work,
the metal is characterized by a nonlossy Drude model so that
real optical properties cannot be included. Using Green’s ap-
proach, Gruner and Welsch31 introduce a quantization
scheme for electromagnetic fields in dispersive and absorp-
tive materials. It should hence be possible to quantize the
field associated with surface waves using their model. Note
that due to losses, they cannot obtain operators for modes but
only local operators: one recovers the usual creation/
annihilation operators in the limit of zero losses. A related
work, reported in the early nineties by Babiker et al.,32 dealt
with the quantization of interface optical phonons in quan-
tum well, which could appear also as a confined surface pho-
non in a heterostructure.
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In this paper, a quantization scheme that is not based on a
specific model of the dielectric constant is introduced. The
aim is to quantize the field by accounting for the experimen-
tal dispersion properties of the medium. The procedure fol-
lows the quantization scheme for photons in a vacuum. We
will first introduce a classical-mode description of the sur-
face waves and discuss the dispersion relation. A key issue
for quantization is the definition of the energy of surface
waves for dispersive lossy media. The problem of electro-
magnetic energy in a dispersive and lossy medium has been
recently addressed in a paper by Stallinga.33 The third sec-
tion addresses the problem of the electromagnetic energy as-
sociated with surface waves in a simpler case following Lan-
dau and Lifchitz for nonlossy dielectric material.34 The
quantization scheme is finally described in the fourth section.
In order to check our results, we apply our formalism in the
fifth section to the calculation of the spontaneous emission of
a two-level system in the presence of surface plasmons. The
Purcell factor �i.e., the local density of states normalized by
the vacuum density of states� and Einstein’s coefficients are
also derived using this model.

II. MODAL DESCRIPTION OF SURFACE WAVES

Let us consider surface waves propagating on a plane in-
terface at z=0 separating two semi-infinite media �Fig. 1�.
One of them is a vacuum or air and the second is a metal or
a polar material. A surface mode is characterized by its cir-
cular frequency � and the projection of the wave vector K
on the plane perpendicular to the z axis. The material has a
dielectric constant ����. We use Coulomb’s gauge
�div A�r , t�=0� to write the magnetic and electric fields

B�r,t� = � � A�r,t� , �1�

E�r,t� = −
�A�r,t�

�t
. �2�

The field produced by any distribution of sources in the
presence of an interface can be computed using Green’s ten-
sor. By extracting the pole contribution, it is possible to de-
rive the general form of the surface-plasmon field. The de-
tails of this procedure can be found in Ref. 35. The
corresponding vector potential can be cast in the form

A�r,t� =� d2K

�2��2�KuK�z�exp�iK · r�exp�− i�spt� + c.c.,

�3�

where c.c. stands for complex conjugate. In this equation, K
is a real wave vector parallel to the interface and the circular
frequency �sp is a complex root of the equation

K =
�

c
� ����

���� + 1
. �4�

The term �K is an amplitude associated with wave vector K
in the decomposition. The vectors uK�z� are given by

uK�z� =
1

�L��sp�
exp�i� jz��K̂ −

K

� j
ẑ� , �5�

where L��sp� has the dimension of a length and will be fixed
later by Eq. �B5� to normalize the energy of each mode. � j is
the projection of the wave vector along the z axis, j=1 in the
region z�0, and j=2 in the region z	0, so that � j

2

=� j��sp��sp
2 /c2−K2. The sign of � j is then chosen such as the

field goes to zero when z goes to 
�. Let us note that in the
nonlossy case, �1 and �2 are purely imaginary, so that the

electric field decays exponentially along the z axis. K̂ and ẑ
are unit vectors directed along K and the z axis, respectively.

Figure 2 shows the dispersion relation of surface plas-
mons as well as the variation in the imaginary part of the
frequency with K on a plane interface of silver. To perform
the calculations when a complex frequency is needed, it has
been useful to fit the experimental values of the dielectric
constant ���� given by Ref. 36 with an analytical model. The
real part of the silver dielectric constant is very well repre-
sented by a Drude model given in Ref. 14. For the imaginary
part we add to this Drude model a conductivity term, so that
the modelized dielectric constant is in very good agreement
with the experimental data. The model we used is given in
Appendix A. In this example, Im��sp� is small, less than 5%,
comparing to Re��sp�. In other words, the lifetime of the

z

K, ω

Substrate

j=2, ε(ω)

Vacuum, j=1

K

FIG. 1. �Color online� Surface wave on a plane interface. The
surface mode is characterized by its circular frequency � and the

projection of the wave vector along the interface K. K̂ and ẑ are
unit vectors along and perpendicular to the plane interface,
respectively.
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FIG. 2. �Color online� Dispersion relation of a surface plasmon
on a plane interface between air and silver �solid line, left axis� and
variation in the imaginary part of � �dashed line, right axis�. The
dispersion relation has been obtained using the silver dielectric con-
stant given in Appendix A.
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surface mode is long enough to have a few tens of periods
for the oscillating electromagnetic field on the asymptotic
part of the dispersion relation and hundreds of periods on the
linear part, close to the light cone. Note that this point seems
to be rather general. Indeed we found similar ratios for many
other materials supporting surface waves.

From the dispersion relation, it is possible to derive the
density of states. To this aim, it is convenient to introduce a
virtual box, which is in fact a virtual square in the x-y plane
of sides Lx and Ly and size S=Lx�Ly. Born-Von Karman’s
conditions yields a quantized value of the wave vector Kx
=nx2� /Lx , Ky =ny2� /Ly, where nx,y are relative integers.
Let us note that a different expansion of the surface-plasmon
field can be used with a complex wave vector and a real
frequency as discussed in Ref. 35. We stress here that the
Born-von Karman procedure imposes a real wave vector. It
follows that the relevant dispersion relation has no back-
bending as seen in Fig. 2. The reader is referred to Ref. 35
for more details. Substituting the discrete sum 1

S	K over the
quantized wave vector K and the discrete amplitude SAK to

 d2K

�2��2 and �K, respectively, the vector potential can be cast
as

A�r,t� = 	
K

AKuK�z�exp�iK · r�exp�− i�t� + c.c., �6�

where we have omitted the subscript sp for the circular fre-
quency �. We can insert this form in Eqs. �1� and �2� to
obtain the electric and magnetic fields. Introducing the nota-
tions k j =K+� jẑ and bK�z�=k j �uK�z�, we have

E�r,t� = i	
K

�AKuK�z�exp�iK · r�exp�− i�t� + c.c.,

�7a�

B�r,t� = i	
K

AKbK�z�exp�iK · r�exp�− i�t� + c.c. �7b�

III. ENERGY OF A SURFACE WAVE

The quantization procedure is based on the fact that the
energy of the field has the structure of a sum of harmonic
oscillators. It is thus a key issue to derive the energy of the
surface-plasmon field. In this section, we give a brief outline
of the derivation and leave the details to Appendix B and
supplementary material.37 In a vacuum, the energy density is
given by38

u1 =
�0

2
E2�r,t� +

1

2�0
B2�r,t� . �8�

The electromagnetic energy in a lossy dispersive material
is a more subtle issue. This problem has been addressed for
the first time by Brillouin.39 He considered a very simple
case, with two perfectly monochromatic waves in the mate-
rial. Landau and Lifchitz34 analyzed the energy of an elec-
tromagnetic field in a nonlossy dispersive medium, whose
frequencies form a narrow continuum around the mean fre-
quency �0. They dealt with fields such as E=E0�t�exp�

−i�0t�, E0�t� varying slowly over the period 2� /�0. In the
Appendix B, we follow this method. The main idea is to
derive the work done by an external operator to build adia-
batically the field amplitude. This work is equal to the total
amount of electromagnetic energy of the surface waves for a
nonlossy medium. Note that more recently, Stallinga33 de-
rived an expression of the energy for dispersive and lossy
materials. The result is the same provided that � is replaced
by Re���. This suggests that it is possible to neglect losses in
the calculation of the energy. Actually, it is essential to deal
with a nonlossy medium to have well-defined modes. A key
issue regarding this approximation is whether the dispersion
relation is modified by the presence of losses. Indeed, the
density of states critically depends on the dispersion relation.
We compared the dispersion relation obtained using Re��sp�
for a lossy medium with the dispersion relation with a non-
lossy medium in the case of silver. We found a relative dif-
ference between the two dispersion relations always less than
1.5�10−3.

We will thus neglect the losses of the medium in the deri-
vation of the energy. The calculation outlined in Appendix B
gives the total energy of the surface waves

U = 	
K

�0�2S�AKAK
� + AK

� AK� . �9�

We emphasize that this convenient expression for the energy
is obtained using the right normalization condition on L���
or equivalently on uK�z� given, respectively, by Eqs. �B5�
and �B6�.

IV. QUANTIZATION OF SURFACE WAVES

We now turn to the quantization of the electromagnetic
field of surface plasmons. We first notice that the expression
�0�2S�AKAK

� +AK
� AK� of the energy for each mode K, has the

structure of the energy of a harmonic oscillator, hence the
quantized hamiltonian

Ĥ = 	
K


�

2
�âKâK

† + âK
† âK� �10�

with the equivalence

AK →� 


2�0�S
âK, �11�

AK
� →� 


2�0�S
âK

† . �12�

The surface wave field is thus quantized by association of
a quantum-mechanical harmonic oscillator to each mode K.
We introduce âK

† and âK which are, respectively, the creation
and annihilation operators for the mode K. As in the
harmonic-oscillator theory, âK

† and âK act on surface wave-
number states �nK� which are eigenvectors associated with
eigenvalues �nK+1 /2�
� of the Hamiltonian �nK is an inte-
ger�. Operators âK

† �respectively, âK� allow to create �respec-
tively, destroy� a quantum of energy 
� according to the
operating rules1
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âK
† �nK� = �nK + 1�nK + 1� , �13�

âK�nK� = �nK�nK − 1� . �14�

Different surface modes are independent so that their as-
sociated operators commute

�âK, âK�
† � = �K,K�. �15�

We can now write the fields as operators acting on the
surface-plasmon number quantum states �nK�

Ê�r,t� = i	
K
� 
�

2�0S
uK�z�âK exp�iK · r�exp�− i�t� + H.c.,

�16�

B̂�r,t� = i	
K
� 


2�0�S
bK�z�âK exp�iK · r�exp�− i�t� + H.c.,

�17�

where H.c. denotes the hermitian conjugate.

V. EMISSION RATES: COMPARISON WITH THE
CLASSICAL CASE, EINSTEIN’S COEFFICIENTS

A. Spontaneous emission of a dipole above a metallic interface

The quantization scheme that we have introduced allows
to derive an expression of the electromagnetic field using
operators. Hence, we can write interaction hamiltonians and
describe the coupling between light and matter. In order to
test this quantization procedure, we performed the calcula-
tion of the lifetime of a two-level system placed in the vicin-
ity of a metal-vacuum interface so that surface plasmons can
be excited. This result is interesting as the lifetime can also
be computed using a classical approach as shown, for in-
stance, by Ford and Weber.40 More specifically, they showed
how to find the surface-plasmon contribution to the lifetime
by extracting the pole contribution. By comparing both re-
sults, we can assess the validity of the quantum theory of
surface plasmon within the approximation of a dispersive but
nonlossy medium.

1. Quantum calculation

In the quantum approach, we first derive the decay rate
associated to the spontaneous emission of surface plasmons
of a two-level quantum system close to an interface, using
Fermi’s golden rule. This gives the surface-plasmon sponta-
neous emission rate as a function of the matrix element


2�D̂�1�=D12 of the dipole moment operator D̂. The details of
the calculation are given in Appendix C.

We obtain the following expression for the spontaneous
emission rate:

�spont�D12,�0,z� =
�0�D12�2

2�0

K

dK

d�

1

Lef f�z,d12,�0�
�18�

in which d12=D12 / �D12� is the �possibly complex� polariza-
tion of the dipole, d12,z=d12· ẑ, d12,� =d12−d12,zẑ. We intro-

duced the effective length of the surface-plasmon mode
Lef f�z ,d12,�0�,

1

Lef f�z,d12,�0�
=

exp�2i�1z�
L��0� �1

2
�d12,��2 − ���0��d12,z�2� .

�19�

It will be seen later that this length allows to define an ef-
fective volume of the plasmon mode.

For comparison with the classical calculation, we normal-
ize �spont�D12,�0 ,z� with the spontaneous emission rate of
the same two-state quantum system in a vacuum, given by1

�spont
0 =

�0
3�D12�2

3��0
c3 . This gives the Purcell factor associated to the
emission of surface plasmons

FP�d12,�0,z� =
3�c3

2�0
2 K

dK

d�

1

Lef f�z,d12,�0�
�20�

which does not depend anymore on the amplitude of D12, but
only on its polarization d12, its frequency �0, and its distance
to the interface z. As expected, the Purcell factor decreases
exponentially as the dipole goes farther from the interface,
and can have rather high values �see Fig. 3 and comments
below� as �0 gets closer to the asymptotic frequency of sur-
face plasmons if the dipole is not too far from the interface.

This Purcell factor can also be cast under the form

FP�d12,�0,z� = �0g��0�
�0

3

Vef f�z,d12,�0�
3

8�
, �21�

where the �global� density of states of surface plasmons
g��� is given by g���=S K

2�
dK
d� and Vef f�z ,d12,�0�

=SLef f�z ,d12,�0� is the volume of the surface-plasmon
modes of frequency �0 for a dipole polarization d12 in which
the emission occurs. Equation �21� is thus similar to the Pur-
cell factor FP of a dipole interacting with a single-damped
mode.41 �FP=Q �3

V
3

4�2 , or equivalently FP=�g��� �3

V
3

8� using
the density of states of the single mode at resonance, g���
= 2

�
Q
� �.
When dealing with an isotropic distribution of dipoles, the

average of the rate of spontaneous emission �Eq. �18��, over
the orientations of the dipole D12, should be considered. Let
us first introduce the total effective length of the surface-
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FIG. 3. �Color online� Normalized emission rate FP of a vertical
dipole located at 10 nm �top�, 75 nm �center�, and 250 nm �bottom�
from the surface when taking into account losses �solid lines� com-
paring to the nonlossy cases �dashed-dotted lines�.
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plasmon mode, defined as the inverse of the average of
1

Lef f�z,d12,�0� over the directions of d12

1

Lef f ,total�z,�0�
=

1

3

exp�2i�1z�
L��0�

�1 + ����0��� . �22�

Calculating the averaged rate of spontaneous emission then
amounts to replacing Lef f�z ,d12,�0� by Lef f ,total�z ,�0� in Eq.
�18�

�spont,total��D12�,�0,z� =
�0�D12�2

2�0

K

dK

d�

1

Lef f ,total�z,�0�
.

�23�

More details are given in Appendix C.

2. Classical approach

In the previous section, we considered a two-level quan-
tum system having a given polarization d12 and Bohr circular
frequency �0, and we normalized its spontaneous emission
rate by its value in a vacuum. The power radiated by a clas-
sical harmonic dipole having the same polarization d12 and a
circular frequency �0 can also be normalized by its value in
a vacuum. Both expressions give the normalized local den-
sity of states, which is a classical quantity. They are therefore
equal, that is the normalized radiated power gives the nor-
malized spontaneous emission rate. The normalized radiated
power can be expressed as a function of Green’s tensor

GJ �r ,r� ,�� of the system

FP,cl�d12,�0,z� =
6�c

�0
Im�d12

� · GJ �zẑ,zẑ,�0�d12� . �24�

Following the steps detailed in Ref. 35, the pole contribu-

tion GJ sp of Green’s tensor of a plane interface can be de-
rived, and inserted in Eq. �24�. We use here the pole contri-
bution of the surface plasmon with a complex frequency �see
Ref. 35�. The details of the calculation are given in Appendix
D. One finds for the normalized radiated power in the non-
lossy case

FP,cl�d12,�0,z� =
3�c3

�0
3 K3dK

d�
R�K,�0�exp�2i�1z�

��1

2
�d12,��2 − ���0��d12,z�2� . �25�

Comparing Eq. �25� with Eq. �20�, one can check37 that
FP�d12,�0 ,z�=FP,cl�d12,�0 ,z�. We thus recover the quantum
spontaneous emission rate in the nonlossy limit of the above
classical approach. This result is not surprising. Indeed the
normalized spontaneous emission rate yields the local den-
sity of states. The latter is a classical quantity. In the quan-
tum approach, it has been calculated using the dispersion
relation. In the classical approach, it has been calculated us-
ing the Green’s tensor. We have thus checked that the mode
approach and the Green’s formalism approach are equiva-
lent. We now go one step further and compare the quantum
approach �without losses� with the Green’s tensor approach

that accounts for losses. We compute the spontaneous emis-
sion rate for both cases in order to assess the role of losses.

3. Comparison with the lossy case

The lossy and nonlossy emission rates are compared using
Eqs. �20� and �D8�. The result is seen on Fig. 3 for a dipole
located at three different distances of a silver surface �10, 75,
and 250 nm�. It appears that the differences between both
curves in this case are still very small as long as the fre-
quency is not too close from the asymptote of the dispersion
relation. This is not surprising considering the fact that at this
asymptotic value the losses are the most important. More-
over, when the distance between the dipole and the interface
increases, the part of the electromagnetic field due to the
higher surface-plasmons wave vector decreases, so that the
part due to the surface plasmons lying on the linear part of
the dispersion relation is more important. As seen in Fig. 2,
these surface waves have less losses and the quantum ap-
proach is thus more accurate. It follows the important con-
clusion that the nonlossy medium approximation in the quan-
tum treatment is reasonable to deal with surface waves
provided that the frequency is not too close to the asymptotic
value.

Note that Ref. 40 provides an expression for the surface-
plasmon emission rate of a dipole close to an interface,
which can be compared to ours �details not given here�. In
the nonlossy case, it can be proved analytically that their
results lead to the same normalized emission rate as Eq. �20�.
In the lossy case, one finds a normalized emission rate close
to the one used here �Eq. �D8��, although they are not rigor-
ously equal. Our method gives an expression of the normal-
ized surface-plasmon emission rate as a sum over the modes
K �see Eq. �D4��, which provides a better understanding of
the difference between the lossy and the nonlossy cases.

B. Einstein’s coefficients

A quantum approach for surface waves allows us also to
derive easily Einstein’s coefficients for spontaneous and
stimulated emission. The same example of a dipole above the
interface is taken. Once again, it is possible to follow the
approach described for photons in Ref. 1, for instance. Ein-
stein’s coefficient for surface-plasmon spontaneous emission
has already been calculated: A21=�spont�D12,�0 ,z� �see Eq.
�18��. In order to obtain Einstein’s coefficient for stimulated
emission, one needs to start from Eq. �C3�. In this equation,
the term proportional to nK is the matrix element for stimu-
lated emission. We note 
W���� the energy density of the
radiation per unit surface and we assume that it varies slowly
for frequencies near �0. The total energy in the single mode
nK is now replaced by

nK
� → S� d�
W���� . �26�

The transition rate due to stimulated emission can thus be
written
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�stim�D12,�0,z� =
2�


2 � d�
W����

�
1

2�0
�D12 · uK�r��2��� − �0� . �27�

It follows that Einstein’s coefficient for stimulated emis-
sion in mode K, B21=�stim�D12,�0 ,z� / 
W��0��, is given by

B21 =
��D12�2

�0
2

exp�2i�1z�
L��0�

�d12,� cos � −
K

�1
d12,z�2

, �28�

where d12,� and d12,z are defined above, and � is the angle
between the projection of D12 on the interface and K. When
dealing with an isotropic distribution of dipoles, B12 should
be averaged over the directions of D12, in the same way as in
Sec. V A 1. We get the total Einstein coefficient for stimu-
lated emission in mode K

B21,total =
��D12�2

3�0
2

exp�2i�1z�
L��0�

�1 − ���0�� . �29�

To describe the amplification of a surface-plasmon beam
by an amplifying medium, it is interesting to derive the ratio
r��0 ,z�=A21

�i���D12� ,�0 ,z� /B21,total��D12� ,�0 ,z�, where
A21

�i���D12� ,�0 ,z�=�spont
0 
FP,cl

�i� �d12,�0 ,z�� stands for the total
spontaneous emission rate of the dipole close to the interface
��i� denotes interface�, and �spont

0 is given above. It can be
computed with Eq. �24�, using Green’s tensor of a plane
interface �this rate includes all the waves that can be emitted,
not only surface plasmons�. 
 · � stands for average over the
orientations d12 of the dipole. r��0 ,z� gives the threshold
energy per unit surface Wc��0� at which the stimulated emis-
sion rate equals the spontaneous one. It can be written as

r��0,z� = r0��0�

FP,cl

�i� �d12,�0,z��
exp�2i�1z��1 − ���0��

L��0� , �30�

where r0��0�= 
�3

�2c3 is the ratio of the Einstein’s coefficients in
a vacuum. Figure 4 shows r�� ,z� as a function of �. From 0
to approximately 35 nm, the ratio decreases, mainly because
the �total� spontaneous emission rate A21

�i� decreases. Above
35 nm, the ratio increases as B21 decreases because of the
exponential decay of the surface-plasmon field away from

this interface. Note that for a given frequency �, r��0 ,z�
rises at lower distances for � closer to the surface-plasmon
asymptote frequency.

These results can be used to calculate the amount of
power that undergoes stimulated emission of surface plas-
mons in a gain medium in close vicinity of the silver inter-
face. We consider a parallel beam of surface plasmons. and
suppose that they are excited via a grating or a prism by a
He-Ne laser whose emission has a linewidth of about ��
=10 MHz centered around �0=2 eV, and that they carry
P=1 mW of power per �m. The spectral power at maxi-
mum, assuming a lorentzian profile, is given by P���0�
= P /���, and the associated spectral energy per unit surface
is W��0�= P���0� /vg= P

���vg
where vg= dK

d� is the group ve-
locity of surface plasmons, close to c below the asymptote
frequency. The spectral energy per unit surface at maximum
of these surface plasmons is then W��0�� P

���c
�103
 nm2. This value is far above those of Fig. 4: stimu-
lated emission in a freely propagating surface-plasmon beam
is several orders of magnitude higher than spontaneous emis-
sion.

VI. CONCLUSION

In this paper, we have extended previous work on quan-
tization of surface plasmons by introducing a formalism that
can use experimental values of the dielectric constant instead
of using a specific model for the free-electron gas. The key
step is the derivation of the energy of a surface plasmon in a
dispersive nonlossy medium. The standard quantization
scheme in Coulomb’s gauge yields the quantum form of the
field. This scheme can be extended in a straightforward way
to thin metallic films. To illustrate the formalism, we have
derived the spontaneous emission rate of surface plasmons
by a two-level system placed close to an interface supporting
surface waves as well as Einstein’s coefficients. This quan-
tized theory of surface plasmon will be useful to analyze
specific quantum effects such as antibunching, single plas-
mon interference, quantum coherence properties, but also to
derive the interactions of surface waves with other quantum
objects, as quantum wells, for example.
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APPENDIX A: DIELECTRIC CONSTANT MODEL

When cases with losses are considered in this paper, we
must sometimes consider the case of complex frequencies.
An analytical model for the dielectric constant is needed to
evaluate ���� when � is complex. The dielectric constant
model which has been used in this paper is the following:

4 1 0 0 2 0 0 3 0 0 4 0 0

z ( n m )

0 . 0

0 . 5

1 . 0

1 . 5

2 . 0

1
0
4
×

r
(ω

,z
)
(
.n
m

−
2
)

1 . 0 0 e V
1 . 5 0 e V
2 . 0 0 e V
2 . 5 0 e V
3 . 0 0 e V

FIG. 4. �Color online� Ratio of Einstein’s coefficients r�� ,z� for
�total� spontaneous emission and stimulated emission of surface
plasmons as a function of the distance to the interface, for several
values of � �see legend�.
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���� = �� −
�p

2

�2 + i��
+ i

�

�0�
, �A1�

where we take the values ��=5, 
�p=9.1 eV, and 
�
=0.021 eV of Drude’s model given by Ref. 14. We add also
a conductivity term to have a better fit of the imaginary part
of the dielectric constant, we take 
� /�0=1.8 eV. Figure 5
compares the experimental data36 and both Drude’s model
from Ref. 14 and the model used in this paper in Eq. �A1�.

APPENDIX B: DERIVATION OF THE ENERGY

In this section, we focus on the derivation of the electro-
magnetic energy associated with surface waves. The main
idea is to derive the work done by an external operator to
build adiabatically the field amplitude in a nonlossy medium.
The energy balance from time t=0 to t=T reads

U = �
0

T

dt� d3r�E
�D

�t
+ H

�B

�t
� = �

0

T

dt� d3r�− j · E�

�B1�

in which 
0
Tdt
d3r�−j ·E� is the operator’s work on the sys-

tem between t=0 and t=T. T must be large for this work to
be adiabatic. U then does not depend on T. In other words,
this is also the total electromagnetic energy of the system.
Due to the exponential decrease along the z axis, the contri-
bution of the Poynting vector, which should appear in the left
term of Eq. �B1�, drops to zero. We want hence to derive the
first term of Eq. �B1� to obtain the electromagnetic energy.

The first step is to introduce time-dependent amplitudes in
Eq. �6�: AK is then replaced by AK�t� in which AK�t�=AK
� f�t�. This accounts for operator’s work. For the sake of
convenience, we take a 2T-periodic function for which f�0�
= f�2T�=0 and f�T�=1, so that we can write f�t�
=	nfn exp�i2�n t

2T �. T is the typical time of variation in the
amplitude AK�t�. T has to be taken sufficiently large to con-
sider the work done by the operator as adiabatic. �For in-
stance, f�t�=sin�� t

2T ��.
Lengthy and tedious calculation37 then leads to the fol-

lowing expression for U:

U = 	
K

�0S�2 1

L��� 	
j=1,2

1

2�� j�
��1 +

K2

�� j�2
�d��� j����

d�

+ � � j

� j
�2�2

c2 ��AK�2. �B2�

We use the degree of freedom to set L��� as we wish, to
drastically simplify this equation. We set

L��� =
1

2 	
j=1,2

1

2�� j�
��1 +

K2

�� j�2
�d��� j����

d�
+ � � j

� j
�2�2

c2 �
�B3�

and put Eq. �B2� under the form

U = 	
K

�0S�22�AK�2. �B4�

Let us give equivalent expressions37 of Eq. �B3�. Using Eq.
�4�, the definition of � j, and �����−1 at the frequencies of

surface plasmon of a single interface, Eq. �B3� can be written

L��� =
− ����
2��1�

+
1

4��2��1 − ����
− ����

d�������
d�

− 1 − ����� .

�B5�

This is equivalent to the normalization condition

�
−�

�

dz
1

2
�d��� j����

d�
+ �� j����

�1 + �����
1 + ��������uK�z��2 = 1.

�B6�

This equation can also be put in a more familiar form

�
−�

�

dz� �0

2

d��� j����
d�

�EK�z��2 +
1

2�0
�BK�z��2� = �0�2�AK�2,

�B7�

where EK�z�= i�AKuK�z� and BK�z�= iAKbK�z� �so that
E�r , t�=	Kexp�iK ·r�EK�z�exp�−i�t�+c.c. and B�r , t�
=	Kexp�iK ·r�BK�z�exp�−i�t�+c.c.�.

APPENDIX C: QUANTUM CALCULATION OF THE
SURFACE-PLASMON EMISSION RATE OF A DIPOLE

We follow the same steps as in the derivation of the pho-
ton emission rate by a two-level system in a vacuum. The
fundamental and excited states of the two-level system are
denoted �1� and �2�, respectively, associated with energies E1
and E2. We define a circular frequency �0, so that E2−E1
=
�0. The two-level system is initially in its excited state,
and there are nK surface plasmons so that the global initial
state can be written: �i�= �2,nK�. In the final state, the dipole
is in its fundamental state and a surface plasmon has been
created in a mode K. We denote the final global state �f�
= �1,nK+1�. The interaction Hamiltonian is −D̂ · Ê, where D̂
is the electric-dipole moment operator and Ê the quantum
electric-field operator introduced in Sec. IV, at the position of
the emitter. The emission rate �inverse of the lifetime � of the
excited state� is given by Fermi’s golden rule

� =
2�



	

f

�
f �D̂ · Ê�i��2��E2 − E1 − 
�� . �C1�

This expression can be rewritten as a sum over the modes K

� =
2�



	
K

MK��E2 − E1 − 
�� , �C2�

where MK= �
1,nK+1�D̂ · Ê�2,nK��2. We note 
2�D̂�1�=D12.
Using the former expression and Eqs. �13�, �14�, and �16�,

we obtain the following matrix element:

MK =

�

2�0S
�D12 · u1,K�z��2�nK + 1� . �C3�

In this equation, the nK term stands for the stimulated emis-
sion and the constant term 1 accounts for the spontaneous
emission. This section is devoted to the spontaneous emis-
sion so that we do not consider the term associated to nK.
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Using Eqs. �C2� and �C3�, substituting a continuous sum
over the vectors K in polar coordinates to the discrete sum
	K, and now writing �spont instead of � we get

�spont =
2�



�

0

�

dKK
S

�2��2


�

2�0S
��E2 − E1 − 
��

� �
0

2�

d��D12 · u1,K�z��2. �C4�

The integration over the directions � of K can now be per-
formed using Eq. �5�. We first write

�D12 · u1,K�z��2 = �D12�2
1

L��sp�
exp�2i� jz���d12,� · K̂�2

+ �d12,z
K

� j
�2

+ 2 Re�d12,� · K̂d12,z
� K

� j
��� .

�C5�

The third term inside the square brackets on the right-hand
side of Eq. �C5� vanishes after integration over �, as this

term depends on � only through K̂ and as 
0
2�d�K̂=0. The

integration thus gives

�
0

2�

d��D12 · u1,K�z��2 =
2�

Lef f�z,d12,�0�
�D12�2. �C6�

Lef f�z ,d12,�0� is defined by Eq. �19�. The spontaneous emis-
sion rate of surface plasmon can then be cast in the form
given by Eq. �18�.

Averaging �spont over all the possible directions �� ,�� and
all the precession angles � of D12, we get the “total” spon-
taneous emission rate of surface plasmons

�spont,total��D12�,�0,z� =
1

8�2�
0

�

d� sin ��
0

2�

d��
0

2�

d�

��spont�R�,�,��D12�,�0,z� , �C7�

where R�,�,��D12� is D12 rotated by Euler’s angles for nuta-
tion, precession and intrinsic rotation �, �, and �, respec-
tively. The result of the integration over �, �, and � is given
by Eq. �23�.

APPENDIX D: DERIVATION OF THE EMISSION RATE
OF A DIPOLE IN THE CLASSICAL LOSSY CASE

The aim of this section is to derive an explicit form of the
Purcell factor due to the presence of surface plasmons by
using the Green’s tensor approach. Using Ref. 35, one can
write the surface-plasmon contribution to the Green’s tensor
evaluated at the position of the source r

GJ sp�r,r,�� =� d2K

�2��2� fJ�K,z,z�
� − �sp

−
fJ��− K,z,z�

� + �sp
� � ,

�D1�

where fJ�K ,z ,z� is given by

fJ�K,z,z� = − g�K,�sp��K̂ −
K

�1
ẑ��K̂ −

K

�1
ẑ�exp�2i�1z�

�D2�

as z�0, with g�K ,�sp�=
c2�1

2���sp�
�sp

2 R�K ,�sp� and R−1�K ,�sp�
=−i �

�� ��1�K ,������−�2�K ,����=�sp
. Injecting Eq. �D1� in

Eq. �24�, we obtain

FP,cl�d12,�,z� =
6�c

�
� d2K

�2��2 Im�d12
� · fJ�K,z,z�d12

� − �sp

−
d12

� · fJ��− K,z,z�d12

� + �sp
� � . �D3�

Writing

FK�d12,�,z� = d12
� · fJ�K,z,z�d12 = FK� �d12,�,z� + iFK� �d12,�,z�

and

��sp
� ��� =

�−�sp�

��−�sp� �2+�sp�
2 ,

��sp
� ��� =

�sp�

��−�sp� �2+�sp�
2 ,

we find

FP,cl�d12,�,z� =
6�c

�
� d2K

�2��2 �FK� �d12,�,z���sp
� ���

+ FK� �d12,�,z���sp
� ���

− FK� �d12,�,z��−�sp
�� ���

+ FK� �d12,�,z��−�sp
�� ���� . �D4�

This expression is to be compared to Eq. �C2� in the non-
lossy case. Both expressions are written as sums over the
modes K, of the contribution of each mode to the spontane-
ous emission rate. When losses are low, the last two terms on
the right-hand side of Eq. �D4� are antiresonant, as �−�sp

�� ���

and �−�sp
�� ��� are centered around −�sp� . The second term has

also a small contribution as the average value of ��sp
� ��� is 0.

The main contribution comes from the first term, as ��sp
� ���

goes to −i����−�sp� in the nonlossy limit. Its extremum

2 0

1 0

0

1 0

R
e[
ε
(ω

)]

0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0 3 . 5

ω ( e V )

0

5

1 0

1 5

Im
[ε
(ω

)]

FIG. 5. �Color online� Real and imaginary parts of the dielectric
constant for silver. Experimental data from Ref. 36 �dotted line�,
Drude’s model from Ref. 14 �dashed-dotted line� and fit used in this
paper �solid line� are plotted.
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value is −2Q
�sp�

. Starting again from Eq. �D1�, we write

GJ sp�r,r,�� =
1

�2��2�
0

�

dKK� 1

� − �sp
�

0

2�

d��fJ�K,z,z��

−
1

� + �sp
� �

0

2�

d��fJ��− K,z,z��� , �D5�

aiming at performing the integral over the directions � of K.
We first calculate

�
0

2�

d��fJ�K,z,z�� = − 2�g�K,�sp�UJ�z,�sp� , �D6�

where UJ�z ,�sp�=exp�2i�1z�� 1
2 �x̂x̂+ ŷŷ�−���sp�ẑẑ�. Inserting

Eq. �D6� in Eq. �D5� yields

GJ sp�r,r,�� =
1

2�
�

0

�

dKK�− g�K,�sp�
� − �sp

UJ�z,�sp�

+
g��K,�sp�
� + �sp

� UJ��z,�sp�� . �D7�

Inserting Eq. �D7� in Eq. �24�, one finds

FP,cl�d12,�0,z� =
3c

�0
�

0

�

dKK Im

��− g�K,�sp�
�0 − �sp

d12
� · UJ�z,�sp�d12

+
g��K,�sp�
�0 + �sp

� d12 · UJ��z,�sp�d12
� � �D8�

with d12
� ·UJ�z ,�sp�d12=exp�2i�1z�� 1

2 �d12,��2−���sp��d12,z�2�.
In the nonlossy case, g�K ,�sp� and d12

� ·UJ�z ,�sp�d12 are real,
and Im 1

�−�sp
goes to42 −i����−�sp�. Hence, assuming �

�0 and using the expressions of d12
� ·UJ�z ,�sp�d12 and

g�K ,�sp� given above, one gets Eq. �25�.
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